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ASSESSMENT OF WATER QUALITY AND FACTORS AFFECTING DISSOLVED

OXYGEN IN THE SANGAMON RIVER, DECATUR TO RIVERTON, ILLINOIS

By Arthur R. Schmidt and John K. Stamer

ABSTRACT

Water quality and processes that affect dissolved oxygen in a 45.9-mile
reach of the Sangamon River (from Decatur to Riverton, Illinois) were deter-
mined by analysis of field data collected during low-flow periods in the
summer of 1982. Relations among dissolved oxygen concentrations, water
discharge, biochemical oxygen demand, ammonia nitrogen, nitrite plus nitrate
nitrogen, and phosphorus concentrations, and photosynthetic-oxygen production
were simulated using a one~dimensional,. steady-state computer model. Results
from the model were used to quantify processes affecting dissolved oxygen.

Average measured concentrations of dissolved oxygen decreased from about
8.0 mg/L (milligrams per liter) at Decatur to less than 5.2 mg/L 12.2 miles
downstream. Ammonia nitrogen concentration increased from 0.1 mg/L at Decatur
to as much as 45 mg/L at the mouth of Stevens Creek (2.6 miles downstream),
which carries the treated wastewater from the city of Decatur into the river.
Ammonia nitrogen concentrations decreased steadily with distance downstream
from Stevens Creek to 0.03 mg/L at Riverton. Un-ionized ammonia concentra-
tions exceeded the maximum concentration specified in the State water-quality
standard (0.04 mg/L) throughout most of the study reach.

Data were collected during two 24-hour periods to quantify the diel
variation in dissolved oxygen concentrations and to provide input for a com-
puter model of the water quality. Model simulations indicate that oxidation
of ammonia nitrogen to nitrite and nitrate nitrogen is the primary process
responsible for depletion of dissolved oxygen concentrations.

INTRODUCTION

The U.S. Geological Survey and the Illinois Environmental Protection
Agency (IEPA) operate a network of 204 water-quality observation stations in
Illinois to provide baseline water-quality information, to determine trends in
the surface~water quality in Illinois, and to identify water-quality problem
areas that need more intensive study. On the basis of water-quality data
collected at stations in the network from July 1979 through June 1981 and
Federal (U.S. Environmental Protection Agency, 1976) water-quality criteria,

a water-quality index was assigned to each station. According to the indices
for three stations along a reach of the Sangamon River between Decatur and
Riverton (U.S. Geological Survey station numbers 05573540, 05573650, and



05573800), that reach of the river was considered to have "severe water-quality
problems” (Illinois Environmental Protection Agency, 1982a). Additional water-
quality measurements made at these three stations from October 1980 through
September 1981 showed DO (dissolved oxygen) concentrations as low as 1.2 mg/L,
ammonia nitrogen concentrations as high as 24 mg/L, and nitrite plus nitrate
nitrogen concentrations as high as 15 mg/L (U.S. Geological Survey, 1982). 1In
comparison, the Illinois general-use water-quality standards list minimum
acceptable DO concentrations at 5 mg/L and maximum ammonia nitrogen concentra-
tions such that un-ionized ammonia not exceed 0.04 mg/L, and that ammonia
nitrogen not exceed 15 mg/L (Illinois Pollution Control Board, 1982). 1In

1982, the U.S. Geological Survey entered into a cooperative agreement with the
IEPA to assess the water~quality conditions of the Sangamon River between
Decatur and Riverton, and to describe those conditions that cause depletion of
DO. This report presents the results of the assessment.

Purpose and Scope

The purpose of this report is to present a description of the water
quality and the factors affecting dissolved oxygen for a 45.9-mile reach of
the Sangamon River during low flow. The report presents an overview of
methods of data collection and methods used to calculate DO model parameters
from other measurements. Results from field measurements and water-sample
analyses are presented to quantify the water quality of the river. Methods
used to calibrate the computer model, values used as input to the computer
model, and results from model simulations are presented. The relative impor-
tance of different processes to DO concentrations in the river are interpreted
from these model results.

Dissolved oxygen concentrations are used as the principal indicator of
the water quality in the river. Instream processes that affect deoxygenation
and reoxygenation are evaluated by use of a computer model. These processes
include the biochemical uptake of oxygen, as represented by CBOD (carbonaceous
biochemical oxygen demand), nitrification, atmospheric exchange, and PNET
(photosynthetic DO production).

This study was limited to water-quality conditions during low=flow
periods, when runoff from agricultural and urban lands was minimal. Outflow
from Lake Decatur was controlled to provide steady hydraulic conditions for
the different phases of the field-sample collection.

Study Area

The Sangamon River, located in central Illinois (fig. 1), originates
about 45 miles northeast of Decatur and flows southwesterly past the cities of
Monticello and Decatur to Roby. From Roby, it flows northwesterly toward its
mouth at the Illinois River. The Sangamon River is 240.9 miles in length and
drains an areas of 5,419 mi? (square miles) (Healy, 1979). The study reach
extends from just downstream from Lake Decatur at RM 129.0 (river miles up-
stream from confluence with Illinois River) to Riverton (RM 83.1). The study
reach is 45.9 miles long and drains an intervening area of 1,680 mi 2 (fig. 2).
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In the study reach, the river primarily follows a meandering channel,
although some parts have been channelized. The entire length of the study
reach flows through agricultural land. During the low-flow conditions of this
study, the flow in the river was a sequence of 3- to 6-foot-deep pools inter-
spersed with 1- to 2-foot-deep riffles. The water velocity varied widely,
with velocities measured in pools as low as 0.38 ft/s (foot per second) and
velocities measured over riffles as high as 2.07 ft/s. The channel width is
about 60 to 80 feet throughout the study reach. The average channel slope is
about 1.5 feet per mile. The channel bottom is primarily hard packed sand and
gravel.

The study reach has a single regulated headwater (outlet of Lake hecatur).
The stream receives discharges from eight known wastewater treatment facili-
ties. All of these known wastewater sources discharge into tributaries rather
than to the river itself, and all of these tributaries were sampled during the
sample collection periods.
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APPROACH

A DO mass-balance approach was used to determine the amounts and rates of
deoxygenation and reoxygenation along the study reach. Stream Aeoxygenation
was computed from estimates of ammonia nitrogen loads, CBOD loads, DO consump-
tion through algal respiration, and water temperatures. Stream reoxygenation
was computed from relations involving water temperature, stream velocity and
depth, and the difference between DO saturation and ambient DO concentrations.
The effect of algae and aquatic plants on the DO balance was gquantified as a
net oxygen production from relations based on diel fluctuations in DO.

The approach to data collection consisted of several consecutive phases,
herein referred to as synoptic data collection, diel data collection, stage-
discharge relations, traveltime and reaeration-rate determinations, and photo-
synthetic DO production and respiration. Identification and evaluation of the
effects of different instream processes on DO concentrations were done using a
computer model in phases herein referred to as model calibration, model veri-
fications, and process evaluation. Figure 3 shows the different phases of the
approach to the study, how they interrelate, and how they relate to the pur-
poses of this report. Table 1 lists the sampling sites and identifies the
phases of the study for which each site was used.
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Table 1.--Water-quality sampling sites

[miZ, square miles; dashes indicate no data)

Drainage X Ty,
Station number Station name area River Oge
. (mi2) mile samplingl
05573540 sangamon River at Route 48 at Decatur 938 129.0 P,s,D,R,Q
05573620 Stevens Creek at Decatur 87.1 2126.4 P,D
3395009089001500 Treatment plant effluent to Stevens -- -- P,D
Creek at Decatur
05573625 Stevens Creek near mouth at Decatur 87.9 2126.4 P,D,R
05573630 sangamon River at Wyckles Bridge 1,034 124.4 P,S,D,R,Q
near Wyckles Corners
05573640 sangamon River near Wyckles Corners 1,046 122.1 D
05573650 sangamon River near Niantic 1,054 116.9 P,s,D,R,Q
05573660 Sangamon River at Niantic Bridge 1,075 . 113.8 P,s,D,R,Q
near Niantic
05573665 Sangamon River near Long Point Church 1,084 112.1 D
near Niantic ]
05573685 : Long Point Slough near Illiopolis 61.1 2108.0 D
05573695 Sangamon River near Mount Auburn 1,154 107.2 P,S,b,R,Q
05573730 Mosquito Creek near Mount Auburn 79.8 2106.8 D
05573740 Sangamon River near Bolivia 1,256 102.1 S,D,R,Q
05573800 Sangamon River at Roby 1,264 98.5 s,D,R,Q
05573810 Sangamon River near Buckhart - 1,268 94.9 s,D,R,Q
05573890 Buckhart Creek at Buckhart 99.6 292.1 D
05573920 Clear Creek near Dawson 56.6 2g9.6 D
05573930 Sangamon River near Dawson 1,435 88.2 s$,D,R,Q
05576060 South Fork Sangamon River near 882 2g5.3 D
* Highway 29 near Rochester
05576250 Sugar Creek near Springfield 270 2g85.3 D
05576500 : Sangamon River at Riverton - 2,618 83.1 D,R,Q
! p = sampled during preliminary reconnaissance; .
S = Sampled during synoptic data collection;
D = Sampled during diel data collection;
R = Traveltime-reaeration sampling site;
Q = stage-discharge rating for this site.

2 River miles indicate the location of the mouth of the tributary above the mouth of the Sangamon
River.

3 This site is a wastewater-treatment plant outfall and has no corresponding drainage area.

During the two synoptic data collections, concentrations of DO, ammonia
nitrogen, nitrite plus nitrate nitrogen, and ultimate CBOD were measured for
conditions similar to those at which the data used to calibrate the model
would be collected. The synoptic data collections were planned assuming
steady-state conditions and were intended to indicate the expected location of
the lowest DO concentrations in the study reach and the processes that most
influence the DO under modeling conditions. This information could then be
used in selecting the final location of diel data-collection sites.

Two diel data collections were done to identify the variations in con-
centrations of selected constituents over a 24-hour period. The diel data

collections were done to obtain the data needed to calculate PNET and to
calibrate the model.



Reaeration-rate coefficients and traveltimes were calculated for the
study reach to enable calculation of the reoxygenation rates.

METHODS

Measurement of Streamflow and Channel Characteristics

Stream discharges were needed to calculate reaeration rates and travel-
times as well as dilution of any water-quality constituents in inflows to the
stream. Current-meter measurements were made during the synoptic and diel
sampling using wmethods described by Rantz and others (1982). Relations between
stage and discharge were determined at 10 bridges near where water-quality data
were collected. Stage was measured, from a reference point or by using a wire-
weight gage, every time water-quality data were collected or discharge measured.
These stage measurements were used to determine the slope of the water surface
and in developing stage-discharge relations used to estimate discharge.

Average values of water discharge, flow depth and velocity, channel width,
cross-sectional area, and slope were determined for each .of 16 subreaches based
on values for sites within the subreach. The subreaches were delimited by the
bridges from which samples were collected, by the mouth of Stevens Creek, and
by the mouth of the South Fork Sangamon River (fig. 4). Channel width, slope,
and cross-sectional area were determined for 63 locations in the study reach
from cross-section data provided by the U.S. Army Corps of Engineers. Channel
width at each water-quality sampling site was considered to be equal .to the
surface width, and the average channel slope for each subreach was assumed to
be equal to the water-surface profile.

lleasurement of Water Quality

Water-quality characteristics presented in this report include measured
values of DO concentration, discharge, pH, specific conductance, water tem-
perature, and the results of laboratory analyses of water samples. Instream
measurements of water temperature, specific conductance, pH, and DO concen-
tration were made during all phases of the data collection by using four-
parameter instruments.

During each synoptic sampling, measurements were made and samples were
collected once at nine sites between RM 129.0 and RM 88.2. Discharge, DO
concentration, pH, water temperature, and specific conductance were measured
in the river. Samples for analysis of ammonia nitrogen, nitrite plus nitrate
nitrogen, and ultimate CBOD were collected at each site.

During both diel data collections, sampling was done at 21 sites through-
out the study reach, including effluent from a wastewater treatment facility
and eight tributary sites. Water samples were collected at approximately 3-hour
intervals at every site on the river, Stevens Creek, and the wastewater treat-
ment facility outfall. At the remaining tributary sites, water samples were
collected once during each diel period. Concentrations of organic nitrogen,
ammonia nitrogen, nitrite plus nitrate nitrogen, phosphorus, chlorophyll-a,
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and ultimate CBOD were determined from laboratory analysis of water samples.
Dissolved oxygen concentration, pH, water temperature, and specific conductance
were measured in the river each time water samples were collected and once at
each site between sampling times, when time permitted. Discharge was measured
once at each site during the 24-hour sampling period.

All water samples, except those for ethylene, were analyzed at the IEPA
laboratory in Champaign, Illinois. all analyses, except for ultimate CBOD,
were done according to methods described in the IEPA Manual of Laboratory
Methods (Illinois Environmental Protection Agency, 1982b).

Determination of Carbonaceous Biochemical Oxygen Demand

Amounts and rates of oxygen depletion due to CBOD were determined by using
the method described by Stamer and others (1983). 1In this method, samples were
treated with nytrapyrin to inhibit nitrification, and then incubatéd in the
dark at 20°C. Dissolved oxygen concentrations in the samples were measured
periodically for a minimum of 10 days. The samples were aerated as necessary
to maintain aerobic conditions. The ultimate CBOD and the specific decay rate
were calculated from relations between cumulative DO consumption and elapsed
time.

Calculation of Net Photosynthetic Dissolved Oxygen Production

The effect that algae and aquatic macrophytes had on the DO concentrations
was represented as a net photosynthetic DO production over a 24-hour period.
Net photosynthetic DO production is the gross photosynthetic DO production less
the DO consumption by algal respiration over a 24-hour period.

Net daytime oxygen production and nighttime respiration were calculated
from DO and water-temperature data measured over a 24-hour period using a com-
puter program developed by Stephens and Jennings (1976). The program follows
an approach developed by Odum (1956), in which these values are calculated
based on the variation in DO over a 24-hour period. The net daytime oxygen
production given by the program is the gross photosynthetic oxygen production
less the daytime oxygen consumption by benthal demands, CBOD, and other
demands. Similarly, the nighttime respiration value is the total nighttime
DO consumption by algal respiration, CBOD, and benthal and other demands.

An approach outlined by Terry and others (1983) was used to calculate
PNET from the net daytime oxygen production and the nighttime respiration.
In this method, nighttime and daytime algal respiration values are assumed to
be equal and proportional to the chlorophyll-a concentration (Shindala, 1972).
The difference between nighttime algal respiration and the nighttime respira-
tion value is assumed to be the nighttime DO consumption by CBOD and by benthal
and other demands. The DO consumption by algal respiration, by CBOD, and by
benthal and other demands is assumed to be constant throughout the 24-hour
perioi. The DO consumption by daytime algal respiration, by CBOD and by
bentha. and other demands is added to the net daytime photosynthetic oxygen
producticn to get the gross photosynthetic oxygen production. Net photo-
synthetic DO production is calculated by subtracting the DO consumption by
algal respiration (daytime and nighttime) from the gross photosynthetic oxygen
production.

10



The result of these calculations is a value that includes only the net
effect of photosynethetic DO production and algal respiration, is site speci-
fic, and is correct only for the average water temperature during the 24-hour
data~-collection period. The following equation was used to correct the PNET
values to 20°C:

PNET,o = PNET, (1.08)(T-20) (1)

where PNET; 1is the PNET at T degrees Celsius, in milligrams per liter
per day;
PNET9q is the PNET value at 20°C; and
T is the 24-hour average temperature, in degrees Celsius.

Measurement of Traveltime and Reaeration Rate Coefficients

For the study, the traveltime through any reach of a stream was calculated
as the time required for the peak of the cloud of a conservative, dissolved
tracer dye to travel the length of the reach. Traveltime defines the residence
time of dissolved solutes and suspended materials in the reach, and therefore
affects the deoxygenation and reoxygenation that occur in the reach.

Atmospheric reaeration is the physical transfer of oxygen between the
atmosphere and the river water. The driving force for the process is the DO
deficit, which is the difference between the concentration of DO at saturation
and the actual DO concentration in the river. The reaeration coefficient,
which quantifies the process, is believed to be dependent on stream charac-
teristics such as depth, slope, and flow velocity, and other factors such as
barometric pressure and temperature. The reaeration rate is the rate of change
of DO concentration with time and is equal to the product of the reaeration
coefficient and the DO deficit.

Traveltimes and reaeration rates were measured by using a modified tracer
technique described by Rathbun (1979). In the technique, a fluorescent water-
soluable dye solution (Rhodamine WI') and a low molecular-weight hydrocarbon
gas (ethylene) were injected into the river at constant rates for a predeter-
mined time. Samples were collected downstream from the injection site and
analyzed to determine the concentration of the gas and dye with respect to time.

Two methods were used to calculate the ethylene desorption rates. One
method is based on the upstream-to-downstream changes in the peak concentration
of gas and dye, and the other method is based on the upstream-to-downstream
changes in area under the gas concentration versus time curves. Both methods
require correction for changes in flow in the subreach.

Measured reaeration rates for each reach were standardized to 20°C by
using the following equation:

Kop = K¢ (1.024)(T-20) (2)
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where Ky 1is the reaction coefficient (base e) at T degrees Celsius, in
reciprocal days;
Kyg 1s the reaction coefficient (base e) at 20°C, in reciprocal
days; and
T is the average observed temperature, in degrees Celsius.

Data used to calculate the reaeration rate coefficients were collected at
two different release rates from Lake Decatur. Reaeration rates were measured
in six subreaches from RM 129.0 to RM 107.2 with a release from Lake Decatur
of 105 ft3/s (cubic feet per second). Reaeration rates were measured in sub-
reaches from RM 116.9 to RM 84.6, and in a subreach from RM 126.4 to RM 124.4
with a release from Lake Decatur of 2.7 ft3/s. Predictive equations (Rathbun,
1977) that best estimated the measured reaeration coefficients from the meas-
ured depth, discharge, and velocity were identified. These were later used
to predict the reaeration coefficients corresponding to hydraulic conditions
other than those for which traveltimes and reaeration rates were measured.

OBSERVED WATER QUALITY

Existing water quality was characterized from samples collected during
the synoptic and diel data collections. Measured constituent concentrations
were compared with State water-quality standards to identify constituents that
did not meet State standards. Measured constituent concentrations and com-
parisons with State standards are presented in this section of the report.

The river characteristics presented in this report were determined for
periods when the discharge in the river at RM 129.0 (05573540) ranged from
2.7 to 135 ft3/s. The 7-day, 10-year low-flow discharge estimated for this
location is 4.6 ft3/s. The 7-day, 10-year low-flow is calculated based on
streamflow records, and its value will change as the climate changes or as the
hydrologic properties of the area drained by the stream change; it is pre-~
sented here as an index low-flow discharge for comparison with the discharges
at which the river was studied.

Ambient

Date collected during the synoptic data collections of August 2, 1982,
and August 5, 1982, are presented in tables 2 and 3, respectively. The lowest
DO concentration was measured at RM 124.4 (05573630) on both days, with a DO
concentration of 5.2 mg/L on August 2 and 3.0 mg/L on August 5. Based on
these data, additional sampling locations at RM 122.1 (05573640) and RM 112.1
(05573665) were added for the diel data collections.

The State standard for un-ionized ammonia (less than 0.04 mg/L) was
exceeded at all sites downstream from RM 126.4 during the synoptic sampling
of August 2, and at all sites between RM 126.4 and RM 94.9 during the synoptic
sampling of August 5. Other water-quality standards exceeded during the synop-
tic samplings were the minimum DO standard, which was exceeded at RM 124.4 and
RM 116.9, and the maximum ammonia nitrogen standard, which was exceeded at RM
124.4, RM 116.9, and RM 113.8. BAll of these were observed during the synoptic
sampling of August 5.
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Diel

The first diel data collecticn (August 17-18, 1982) was done with a
steady release from Lake Decatur of 105 ft3/s; a release rate that had been
maintained since August 10, 1982. The results of the water-quality analyses
of samples collected during this period are presented in table 10. Dissolved
oxygen concentrations varied from 2.9 mg/L at RM 112.1 to 13.2 mg/L at RM
83.1. The largest diel variation in DO concentration occurred at RM 83.1,
where DO concentrations varied from 13.2 mg/L at 1700 hours on August 17, to
5.0 mg/L at 0800 hours on August 18. During this period, ammonia nitrogen
concentrations ranged from less than 0.1 mg/L at RM 129.0 to 13.0 mg/L at RM
124.4. The ultimate CBOD in the river ranged from 4.9 mg/L at RM 129.0 to
29.0 mg/L at RM 124.4.

Figure 5 shows the un-ionized ammonia concentrations in the river during
the August diel sampling and, for comparison, the State standard of 0.04 mg/L.
These concentrations were calculated based on river pH, temperature, and ammo-
nia nitrogen concentration, using the following equations (Illinois Pollution
Control Board, 1982):

[0.94412 (1 + 10%) + 0.0559]

2729.92 - oH

(T + 273.16) P

U 1is the concentration of un-ionized ammonia, in milligrams per
liter;

where X = 0.09018 +

(4)

N 1is the concentration of ammonia nitrogen, in milligrams per
liter;
T is the water temperature, in degrees Celsius; and
pH is the pH of the water, in units.

The un-ionized ammonia standard was exceeded in a majority of the samples at
all sampling locations downstream from RM 126.4.

During the second diel data collection (September t4-15, 1982), the
release from Lake Decatur was 2.7 ft3/s--a release rate that had been main-
tained since August 19, 1982. The results of the water-quality analyses of
samples collected during this period are presented in table 10. Measured DO
concentrations ranged from 0.1 mg/L at RM 124.4 to 15.9 mg/L at RM 102.1. The
maximum diel variation of 10.5 mg/L occurred at RM 102.1. Ammonia nitrogen
concentrations varied from 1.2 mg/L at RM 129.0 to 43.0 mg/L at RM 124.4.

The ultimate BOD in the river varied from 7.6 mg/L at RM 129.0 to 31.5 mg/L
at RM 94.9.

Figure 6 shows the un-ionized ammonia concentrations in the river during
“the September diel sampling and the State standard for un-ionized ammonia.
The un-ionized ammonia standard was exceeded in a majority of the samples at
all sampling locations downstream from RM 126.4.
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About 4 hours into the September diel sampling, a rainstorm passed over
the study area. Precipitation data for September 14 show 1.17 inches of total
rainfall at Springfield and 0.43 inch at Decatur (John Vogel, Illinois State
Water Survey, oral commun., 1982). Field personnel reported that the precipi-
tation near Decatur began at 1500 hours on September 14 and lasted for about 2
hours. Hourly precipitation data from Springfield are presented in table 4.
Despite the unsteadiness introduced by the storm, sampling was continued
throughout the 24-hour sampling period and the data later examined to evaluate
the effect of the storm. Figure 7 shows the rainfall measured at Springfield
and the changes in discharge throughout the diel sampling period for stations
at RM 129.0, RM 116.9, RM 102.1, and RM 83.1.

Table 4.--Hourly rainfall intensities recorded at
ERE Springfield, Illinois, for the
storm of September 14, 1982

-

" Time Precipitation
i (hours) . (ipches) i N

“¥.000-1200 - © 77 0.00
1200-1300 - : .15
1300-1400 .93

‘ 1400-1500 » 06

1500-1600 ) 403‘
1600-2400 .00

KA

The change in ammonia nitrogen concentration at RM 124.4 between the diel
data periods can be shown, using a mass~balance relation, to be due primarily
to dilution by waters released from Lake Decatur. Daily ammonia nitrogen
loads at RM 124.4 were 4.31 tons (August 17-18 data) and 4.56 tons (September
14-15 data), a difference of 5.7 percent.

EVALUATION OF FACTORS AFFECTING DISSOLVED OXYGEN CONCENTRATION

The effects that various instream processes had on DO concentrations were
evaluated using model simulations. A one-dimensional, steady-state DO computer
model developed by Bauer and others (1979) was used to quantify the effects of
instream processes on DO concentrations. The model relates the oxygen deficit
at any point to the DO concentration at the upstream boundary of the model,
traveltime to that point, mixing and dilution from inflows to the river, and
zero and first-order deoxygenation and reoxygenation processes. Figure 8
shows the different processes simulated in the model and their relations to
DO concentrations.
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In the computer model, the river was represented as 16 subreaches (fig.
4). Subreaches are the smallest unit for which model coefficients can be
input. As such, subreaches were chosen to represent uniform conditions in the
river, with subreach boundaries at locations of sampling sites, inflows to the
river, and changes in channel geometry or flow characteristics. Each subreach
was subdivided by the model into 1-mile long, uniformly mixed segments.

The most downstream segment of a subreach was allowed to be shorter than
1 mile for subreaches whose length was not a multiple of 1 mile. Values for
each model coefficient were the same for all segments in a subreach.
Constituent concentrations were allowed to differ between segments.

Model simulation results for each subreach included DO concentration, DO
deficit, and changes in DO because of PNET, CBOD decay, and ammonia oxidation.
Inflows to each subreach were modeled as entering at the upstream end of the
subreach. The effect of atmospheric reaeration on DO in each subreach was
calculated as the difference between the simulated total change in DO con-
centration and that part of the change accounted for by PNET, BOD decay, and
ammonia oxidation.

Changes in DO concentration resulting from each process were normalized
by traveltimes to allow comparison of processes between subreaches. The net
change in DO concentration caused by a specific process in any given subreach
depends on the kinetics of the process and on the residence time of the water
in the subreach. The effect of a process is therefore greater in reaches with
longer traveltimes. Normalization of the changes in DO were made by dividing
the change in DO concentration caused by each process, by the traveltime
through the subreach.

Inputs to the Model

Types of data input to the computer model were initial and boundary
conditions and model coefficients. Initial and boundary conditions include
effluent loads, observed concentrations of modeled constituents, streamflow
characteristics, channel characteristics, traveltimes, and water temperature.
These data define the physical conditions being modeled. Model coefficients
describe the rates and magnitudes associated with various instream processes,
including PNET, atmospheric reaeration, CBOD decay, nitrification, advection,
and settling.

Initial conditions describe the conditions prior to the period being
modeled. For a steady-state model, initial conditions provide a starting
point for model iterations but will have no effect on the simulated concen-
trations. The average of the measured values for each consitutent at each
site was input as the initial condition for that site and constituent.

Boundary conditions describe the inflow from upstream of the study reach
and from seven tributaries to the river. The average of the measured values
for each constituent was input as the boundary condition for that constituent
and inflow.
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For this study, the model was used to simulate dissolved oxygen, ultimate
CBOD, ammonia nitrogen, nitrite plus nitrate nitrogen, organic nitrogen, phos-
phorus, and specific conductance. Nitrite plus nitrate nitrogen was simulated
by modifying the model such that nitrite was not oxidized to form nitrate and
that the dissolved oxygen used in the oxidation of ammonia to nitrite (4.57 mg
(milligrams) DO per milligram of ammonia) is the stoichiometric equivalent
amount of oxygen used to react ammonia to nitrite (3.43 mg DO per milligram
ammonia) and then nitrite to nitrate (1.14 mg DO per milligram nitrite).

These oxygen requirements are all taken from Zison and others (1978).

Model Coefficients

Model coefficients were determined from measured data whenever possible.
Coefficients determined from measured data include PNET, reaeration-rate coef-
ficients, traveltimes, and discharges. For the model of the August diel data,
coefficients were based on the average of all values measured at each site.
Recognizing the unsteadiness introduced to the measured water-quality parame-
ters by the rainstorm in September, the scope of the data used (to calculate
PNET and to verify and recalibrate the model) were limited to those data
collected before the rain affected the water quality in the study reach. The
time the storm began to affect the measured water quality at each site was
estimated from the time the storm passed and from discontinuities in the
measured stage, specific corductivity, and water temperature values.

Net photosynthetic DO production values ranged from 7.47 to 0.66 (mg/L)/d
(milligrams per liter per day) for the first diel sampling, and from 6.75 to
-2.57 (mg/L)/d for the second. The maximum and minimum PNET values occurred
at RM 98.5 and RM 122.1, respectively, for the first diel sampling. The maxi-
mum and minimum PNET values occurred at RM 106.8 and RM 85.3, respectively,
for the second. The storm passed through the basin at the time when photo-
synthetic DO production is typically at its peak. This may have lowered the
peak DO values observed, resulting in the negative PNET values. Insufficient
data are available to quantify the effect of the storm on PNET.

The estimate of the average discharge was calculated by averaging measured
discharges, those from stage-discharge relations (from- stage measurements},
and those from mass-balance calculations on specific conductance, assuming
specific conductance reflects a conservative stream constituent.

The values for discharge used in the computer model were estimated from
the stage-discharge relations for the site, using the average of all stage
measurements from during the diel sampling. For the September diel sampling,
only stage measurements made before the passage of the storm were included
in the average for each site.

Predictive equations were used to estimate the reaeration coefficients
used in the model. The equations used were those that most closely estimated
measured coefficients from the hydraulic conditions at which they were
measured. The equation developed by Bennett and Rathbun (1972) yielded
constants that most closely matched those measured at discharges similar to
those during the Auqust diel sampling, with 90 percent of the values within
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+0.9 (day~') of the observed constants. The equation developed by O'Connor
and Dobbins (1958) best matched coefficients measured at discharges similar to
those during the September diel sampling with 90 percent of the values within
+1.3 (day‘1) of the observed constants.

Traveltimes

Traveltimes used in the computer model were calculated by dividing the
length of each subreach by an estimate of the average velocity in the
subreach. For the model simulating the August data, subreach velocities were
estimated by dividing the average discharge in the subreach by the average
cross~sectional area of the subreach. For the model describing the September
data, subreach velocities were estimated by an equation that related velocity
to the average discharge in the subreach. This equation was developed from
traveltime data collected at discharges similar to those during the September
diel sampling. From these data, discharge in each subreach was estimated as
the mean of the discharge measured at each end of the subreach. Velocity
through each subreach was estimated by dividing the length of the subreach by
the traveltime through the subreach. Linear regression was used to determine
the straight line that best estimated velocity from discharge. The equation
used to estimate velocity from discharge is

V = 0.012840 - 0.296 (5)

where V is the average velocity in the subreach, in cubic feet per
second, and

0 1is the average discharge in the subreach, in cubic feet per
second.

The linear regression this equation was developed from had a correlation
coefficient of 0.98, with 99 percent of the predicted velocities within 0.06
ft/s of those used in developing the equation.

The discharge in the most upstream subreach was an order of magnitude less
than the lowest discharge used in developing this regression. The discharge
from RM 126.6 to RM 113.6 was about 10 percent less than the lowest discharge
used in this regression. The discharge from RM 85.3 to RM 83.1 was 20 percent
larger than the largest discharge used in developing the regression. All other
discharges were in the range for which the regression was developed.

Reaeration coefficients, traveltimes, and the discharges and subreaches
for which they were determined are listed in table 5. Reaeration coefficients
and traveltimes in reaches of the river from RM 129.0 to RM 107.2 were measured
at discharges similar to those during the August diel data collection. The
reaeration coefficients and traveltimes measured downstream from RM 107.2 were
measured for discharge conditions similar to those during the September diel
data collection.
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Model Simulations

The model was initially calibrated using the August diel data to account
for the effects of instream processes that were not measured. Initial condi-
tions, boundary conditions, and any model coefficients determined from
observed data were input to the model and were not changed during the calibra-
tion process. Inputs for each subreach included the average depth, width,
cross-sectional area, length, traveltime, water temperature, and point-source
discharges and constituent concentrations. Coefficients input and held con-
stant for each subreach were PNET, the atmospheric reaeration rate, and ulti-
mate CBOD decay and oxidation rates. The ultimate CBOD decay rate was assumed
to equal the oxidation rate for this study (see glossary for definition of
these terms).

The model was calibrated by changing the values of model coefficients
that were not calculated from measured data. Model coefficients were adjusted
to cause simulated constituent concentrations to approximate observed data.
Unmeasured model coefficients were always set to values within ranges suggested
by Zison and others (1978). Model coefficients determined through the model
calibration process were the forward reaction rates of organic nitrogen to
form ammonia nitrogen, of ammonia nitrogen to form nitrite plus nitrate nitro-
gen, and decay rates for organic nitrogen, ammonia nitrogen, nitrite plus
nitrate nitrogen, and phosphorus.

The phosphorus and organic nitrogen decay rates were adjusted to cause the
simulated concentrations of these constituents to resemble the concentrations
measured from river-water samples. The forward reaction rate of organic
nitrogen to form ammonia nitrogen was set equal to the organic nitrogen decay
rate in all subreaches. The ammonia nitrogen decay rate was then adjusted to
cause the simulated ammonia nitrogen concentrations to resemble those measured
from river-water samples. The forward reaction rate of ammonia nitrogen to
form nitrite plus nitrate nitrogen was calibrated by adjusting it to cause the
simulated DO concentrations to resemble those observed in the river. Calibra-
tion of the ammonia nitrogen forward reaction rate was limited in that this
coefficient must always be less than or equal to the ammonia nitrogen decay
rate. Finally, the nitrite plus nitrate nitrogen decay rate was adjusted to
cause the simulated nitrite plus nitrate nitrogen concentrations to resemble
those measured from river-water samples.

Coefficients used in the model calibrated to the August diel data set are
listed in table 6, and the boundary conditions input to the model are listed
in table 7. Figure 9 shows steady-state DO concentrations predicted by the
model and concentrations observed in the river. Predicted DO concentrations
simulate the 24-hour average concentration at each site. Simulated and
observed phosphorus, organic nitrogen, ammonia nitrogen, nitrite plus nitrate
nitrogen, and chlorophyll-a (observed only) concentrations, and ultimate CBOD,
discharge, and specific conductance values are shown in figure 10, 11, 12, 13,
14, 15, 16, and 17, respectively.

Ultimate CBOD's simulated by the model calibrated to the August data are
less than measured values. BAll point sources of CBOD were sampled and ulti=-
mate CBOD's and rate constants associated with them were input to the model.
The reason that CBOD increased rather than decreased with distance downstream
is not known.
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PHOSPHORUS CONCENTRATIONS,

ORGANIC NITROGEN CONCENTRATIONS,

IN MILLIGRAMS PER LITER

IN MILLIGRAMS PER LITER
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Figure 10.--Simulated and observed phosphorus concentrations
during the August 17-18, 1982, diel sampling.
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Figure 1l.--Simulated and observed organic nitrogen concentrations

RIVER MILES ABOVE MOUTH

during the August 17-18, 1982, diel sampling.
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AMMONIA NITROGEN CONCENTRATION,

NITRITE PLUS NITRATE NITROGEN
CONCENTRATION, IN
MILLIGRAMS PER LITER
-~
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Figure 12.--Simulated and observed ammonia nitrogen concentrations
during the August 17-18, 1982, diel sampling.
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Figure 13.--Simulated and observed nitrite plus nitrate nitrogen
concentrations during the August 17-18, 1982, diel sampling.
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CHLOROPHYLL-a CONCENTRATIONS,

BIOCHEMICAL OXYGEN DEMAND,
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Figure 14.--Chlorophyll-a concentrations observed during the
August 17-18, 1982, diel sampling.
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Figure 1t .--Simulated and observed carbonaceous biochemical oxygen demand

RIVER MILES ABOVE MOUTH

during the August 17-18, 1982, diel sampling.
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SPECIFIC CONDUCTANCE,
IN MICROSIEMENS PER CENTIMETER

DISCHARGE, IN A
CUBIC FEET PER SECOND
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Figure 16.--Discharges used in the computer model of the data observed
during the August 17-18, 1982, diel sampling.
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Figure 17.--Simulated and observed specific conductance during
the August 17-18, 1982, diel sampling.
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Comparisons between observed ultimate CBOD's, observed chlorophyll-a con-
centrations, and diel variations in DO concentrations show that the increase
in ultimate CBOD occurs in that part of the river where the effect of algae
and aquatic plants is greatest. It is possible that the increase in CBOD was
a result of decay, in the sample bottles, of algae that were killed in the
process of chilling, shipping, and incubating (in darkness) the sample.

The instream death and decay of algae would act as a nonpoint source of
CBOD. However, because some of the dead plant material is transported out of
the study reach and not all the algae die off at the same time, instream CBOD
from this source is much less than what was measured in samples.

Based on these assumptions, the model was calibrated by using CBOD's
measured from point sources to the river. The actual CBOD in the river was
probably somewhere between that simulated by the model and the measured values.
The model was adjusted to simulate measured CBOD in order to determine how much
effect these higher CBOD values would have on simulated DO concentrations. The
DO simulated by forcing model output to equal measured CBOD's should provide an
upper limit on the effect of CBOD.

The largest change in simulated DO concentration, 0.42 mg/L, caused by
inputting measured CBOD's, occurred for a region where DO concentrations were
well above the State's minimum DO standard. The effect in areas where simu-
lated DO concentrations were near the standard was very slight (0.0 to 0.04
mg/L). Measured DO concentrations, those predicted by the calibrated model
and those predicted by the adjusted model, are presented in figure 18.

After the model was calibrated to the August data, boundary and initial
conditions were changed to match those determined from data collected during
the September diel sampling, in an attempt to verify the model. Model verifi-
cation determines the transferability of the model to conditions other than
those for which it was calibrated by using it to simulate constituent concen-
trations resulting from initial and boundary conditions different from those
for which the model was calibrated. Coefficients from the calibrated model
were used in the verification. If simulated constituent concentrations approx-
imate measured concentrations, the model is considered verified over the range
of conditions bounded by the conditions calibrated and verified to. However,
the stream conditions in September were significantly different from those in
August. 1In September, discharge at RM 126.4 was 71 percent lower (from 138 to
40 ft3/s) and ammonia nitrogen concentration was 3.8 times higher (from 11 to
43 mg/L) than in August. Dissolved oxygen and ammonia nitrogen concentrations
predicted by the model, after substituting boundary and initial conditions
from the September data set, were far below the values observed in the stream,
and nitrite plus nitrate nitrogen concentrations were significantly overesti-
mated. These results imply that the forward-reaction rate of ammonia nitrogen
to nitrite plus nitrate nitrogen used in model calibration was higher than the
instream rate during the September diel sampling.

Sitnificant difference in water chemistry between August and September
prevented the development of one model to simulate conditions for both periods.
Because these differences precluded model verification, attempts were made to
recalibrate the model to simulate the September data. By using measured
values, where available, and varying other coefficients with the ranges
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suggested by Zison and others (1978), the model was calibrated to simulate the
September data. The simulated values matched the measured data for all con-
situtents except DO. The simulated DO agreed with the measured values in the
upstream 14.5 miles of the study reach (RM 126.6 to RM 112.1), but greatly
underestimated the observed DO downstream from RM 112.1. The reason why DO
could not be accurately simulated is not clearly known.

The rainstorm that occurred during the September sampling may have
affected the photosynthetic DO production and thus the PNET calculations to
the extent that the data collected were not sufficiently representative of a
steady-state system. The storm passed through the study area at the time of
peak photosynthetic DO productivity and had the effect of "quenching” the peak
DO concentrations. The diminished DO concentrations result in negative values
in PNET calculations for reaches of the river where, by estimating the chloro-
phyll-a concentrations, the PNET should have been greatest.

The rates and coefficients used in the model that best simulated all con-
stituents except DO are given in table 8, and the boundary conditions input to
the model are listed in table 9. The simulated steady-state DO concentrations
and the concentrations observed in the river are shown in figure 19. The
simulated and observed phosphorus, organic nitrogen, ammonia nitrogen, nitrite
plus nitrate nitrogen, chlorophyll-a (observed only) concentrations, ultimate
CBOD, discharge, and specific conductance are shown in figures 20, 21, 22, 23,
24, 25, 26, and 27, respectively.

The forward reaction rate of ammonia nitrogen to form nitrite plus
nitrate nitrogen ranged from 0.02 to 0.20 (day‘1) for this model, as compared
to 0.15 to 0.35 (day'1) for that in the model calibrated to the August data.
The reason for the change in this reaction rate is not known. Possibly insuf-
ficient Nitrosomonas population in the headwaters or toxic effects from the
high ammonia nitrogen concentration on the Nitrosomonas led to a low reaction
rate until the population could increase in response to the high ammonia
nitrogen concentration. Further study is needed to determine what relation,
if any, exists between this rate and the ammonia nitrogen concentration, for
the range of ammonia nitrogen concentrations observed in this study.

The forward reaction rate of ammonia nitrogen to nitrite plus nitrate
nitrogen was identified through the calibration procedure as the most critical
model coefficient with respect to predicting DO concentrations in the river.

Process Evaluation

Figure 28 shows reoxygenation and deoxygenation due to ammonia nitrogen
oxidation, BOD decay, PNET, and atmospheric reaeration, as simulated by the
calibrated model. This plot shows changes in DO concentration, in each reach,
due to each of these processes. A DO concentration profile for the stream is
included to illustrate the net effect of all processes on the simulated DO
concentrations. This plot reflects the actual change in DO in each reach,
allowing comparison of the relative importance of each process within a reach.
This plot also shows the reaches in which each process had the greatest effect
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PHOSPHORUS CONCENTRATIONS,

ORGANIC NITROGEN CONCENTRATIONS,
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Figure 20.--Simulated and observed phosphorus concentrations
during the September 14-15, 1982, diel sampling.
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Figure 21.--Simulated and observed organic nitrogen concentrations
during the September 14-15, 1982, diel sampling.
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Figure 22.--Simulated and observed ammonia nitrogen concentrations
during the September 14-15, 1982, diel sampling.
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Figure 23.--Simulated and observed nitrite plus nitrate nitrogen concentrations
during the September 14-15, 1982, diel sampling.
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CHLOROPHYLL-2a CONCENTRATIONS,

BIOCHEMICAL OXYGEN DEMAND,
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Figure 24.--Chlorophyll-a concentrations observed during the
September 14-15, 1982, diel sampling.
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Figure 25.--Simulated and observed carbonaceous biochemical oxygen demand

during the September

14-15, 1982, diel sampling.
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SPECIFIC CONDUCTANCE,
IN MICROSIEMENS PER CENTIMETER

DISCHARGE, IN CUBIC FEET PER SECOND
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Figure 26.--Discharges used in the computer model of the data observed
during the September 14-15, 1982, diel sampling.
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Figure 27.-~-Simulated and observed specific conductance during

the September 14-15, 1982, diel sampling.
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on DO. However, because these changes are dependent on the traveltime through
each reach, comparisons between reaches do not illustrate the behavior of the
processes with increasing distance from the headwaters.

Figure 29 shows the rate of change of DO concentration due to each of
these four processes. These rates were determined by dividing the change in
DO by the traveltime through the reach. As these rates are independant of
traveltime, they reflect the second-order kinetics; the increase or decrease
of the process with increasing distance from the headwaters.

The reoxygenation/deoxygenation plots (figs. 28 and 29) show that the
oxidation of ammonia nitrogen to nitrite plus nitrate nitrogen is the major
deoxygenation process occurring in those reaches that have the lower 24-hour
average DO concentrations during August. Oxidation of ammonia nitrogen
accounts for the low DO in all reaches where DO concentrations are below the
Illinois standard of 5.0 mg/L. These plots also show that the DO required to
satisfy CBOD was negligible compared to the other demands exerted on DO con-
centrations ‘during Auqust.

Net photosynthetic DO production was a significant factor in determining
the DO concentration profile. 1In Auqust, the effect of PNET was negligible
compared to ammonia oxidation and atmospheric reaeration in the upstream 15.2
miles of the study reach but increased rapidly from RM 113.8 to RM 112.1.
Downstream of RM 112.1, PNET became the dominant reoxygenation process.

Atmospheric reaeration was the most widely varying process, as its rate
and magnitude depend primarily on the magnitude of the DO deficit. Atmospheric
reaeration was the primary reoxygenation process in reaches with the larger
DO deficits. Atmospheric reaeration and PNET tended to offset each other;
reaeration was low when PNET was large, and reaeration rates were large when
PNET was low.

SUMMARY

Dissolved oxygen concentrations and the processes that affect them in the
45.9-mile reach of the Sangamon River downstream of Decatur were quantified by
using instream measurements, laboratory analyses of water samples, and
computer-model simulations. Processes that affect DO concentrations were the
oxidation of ammonia nitregen and carbonaceous organic matter, atmospheric
reaeration, and production and respiration by aguatic plants and algae.

The effects of algae and other aguatic plants on DO concentrations were
quantified as the net DO production over a 24-hour period on the basis of
measured diel variations in the DO concentrations.

Traveltimes were determined by measuring the time required for a dye
tracer to pass between sites. Reaeration rates were determined by measuring
ethylene lost from the stream during the measured traveltime. Predictive
equations were used to estimate reaeration coefficients for discharge condi-
tions other than those at which the coefficients were measured.
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A one-dimensional, steady-state computer model was used to simulate the
DO in the river. In the model, organic nitrogen and ammonia nitrogen concen-
trations were decreased by hydrolysis and oxidation and by a decay term that
included settling to the riverbed and uptake by algae and other plants.
Nitrite plus nitrate nitrogen concentrations in the model were increased by
oxidation of ammonia nitrogen and by point-source to the river, and were
decreased by a decay term that accounted for algal uptake and settling to the
riverbed.

The un-ionized ammonia standard was exceeded in much of the study reach
during the two synoptic sampling periods and during both diel samplings. The
elevated un-ionized ammonia nitrogen concentrations in the river are due to
the elevated ammonia nitrogen concentrations in the wastewater treatment
facility effluent and the pH and temperature of the river water. Other water-
quality standards exceeded in the study reach include the maximum ammonia
nitrogen and minimum DO standards. Simulation results from the computer
modeling showed that most water—-quality standards exceeded were due to the
elevated ammonia nitrogen concentration in the wastewater treatment facility
effluent.

Reaeration rate coefficients and traveltimes for reaches upstream from
RM 107.2 were measured during discharge conditions similar to those of the
August diel sampling. An equation developed by Bennett and Rathbun was used
to predict reaeration-rate coefficients for the reaches downstream from RM
107.2 for the August conditions. Downstream from RM 107.2, reaeration rates
and traveltimes were measured during discharge conditions similar to those of
the September diel sampling. An equation developed by O'Conner and Dobbins
was used to predict reaeration coefficients for reaches upstream from RM 107.2
for the September conditions.

The model was initially calibrated with data collected during the August
diel sampling. Model coefficients that represent the forward reaction rates
of organic nitrogen to ammonia nitrogen and ammonia nitrogen to nitrite plus
nitrate nitrogen, and decay rates for organic nitrogen, ammonia nitrogen,
nitrite plus nitrate nitrogen, and phosphorous were adjusted to make the pre-
dicted DO, organic nitrogen, ammonia nitrogen, nitrite plus nitrate nitrogen,
and phosphorus concentrations resemble those observed throughout the study
reach. ’

Conditions in the river during September were different from those during
August. At the mouth of Stevens Creek, the discharge was much lower and ammo-
nia nitrogen concentrations were much higher in September than they were in
August. Model simulations based on model coefficients used for the August
data could not accurately reproduce the water gquality observed during the
September diel sampling. Model coefficients that describe the forward reac-
tion rates of organic nitrogen to ammonia nitrogen and nitrite plus nitrate
nitrogen and the organic nitrogen, ammonia nitrogen, nitrite plus nitrate
nitrogen, and phosphorus decay rates had to be adjusted in order to reasonably
simulate the organic nitrogen, ammonia nitrogen, nitrite plus nitrate nitrogen,
and phosphorus concentrations observed in September. Model coefficients that
would enable model simulated DO concentrations to reasonably reproduce observed
values were not developed.
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Graphs showing the rates and magnitudes of reoxygenation and deoxygenation
due to ammonia oxidation, BOD decay, PNET, and atmospheric reaeration were
developed and used to describe the effect of each of these processes on the DO
concentrations in the river and to illustrate the relative magnitude of these
processes. From these graphs, oxidation of ammonia nitrogen to nitrite plus
nitrate nitrogen was identified as the most important process that caused DO
concentrations to be below the Illinois water—-quality standard. Atmospheric
reaeration was identified as the most important reoxygenation process in river
reaches with low DO.

CONCLUSIONS

Results presented in this report show that, for the warm-weather, low-
flow conditions described herein, DO concentrations in some parts of the study
reach fall to levels below the Illinois water-quality standards and that un-
ionized ammonia concentrations exceeded the maximum level specified in the
Illinois standards throughout most of the study reach. Model simulations
showed that oxidation of ammonia nitrogen to form nitrite plus nitrate
nitrogen was the predominant cause of the low DO concentrations observed in
the river, and that atmospheric reaeration was the primary process that
increased the DO in those river reaches with the lowest DO concentrations.
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GLOSSARY

Decay coefficient - The coefficient that controls the rate at which constitu-
ent concentrations (reactants) decrease due to modeled processes such as
forward reaction or oxidation (of CBOD) and unmodeled processes such as
settling and uptake by aguatic plants and algae. This coefficient
affects only the constituent whose decay rate it describes. This coef-
ficient must always be equal to or greater than the forward reaction or
oxidation rate for that constituent.

Forward reaction rate coefficient - The coefficient that describes the rate at
which a reactant, a water-quality constituent, reacts to form the product
in a reaction. This coefficient describes the rate at which the product
is increased due to the reaction and has no effect on the concentration
of the reactant. However, if oxygen is also a reactant, the magnitude of
the coefficient will affect the oxygen demand created by the reaction.

Oxidation rate - This coefficient describes the rate at which DO is consumed

by the decay of CBOD. This coefficient has no effect on the ultimate
CBOD.
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